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1. Introduction

Being one of the most vital organs in the human body, 
the heart functions as a potent biological pump that 
actively delivers/recycles the blood toward/from all 
other organs through the vascular system. As a result, 
the capability to regenerate an injured or diseased heart 
has always been a focus and popular subject of research 
in tissue engineering and regenerative medicine. 
Comparing to other tissues, it is highly challenging 
to engineer functional cardiac substitutes due to 
the fact that mature cardiomyocytes exhibit limited 
proliferation potential, thus preventing spontaneous 
recovery of the damaged cardiac tissues [1]. With 
many years of endeavors, the field of cardiac tissue 
engineering has seen tremendous progress in fabricating 
functional cardiac tissues that largely recapitulate 
the biology of the heart [2–5], but challenges remain. 
For example, the alignment of the cardiomyocytes in 
the native heart complicates the parameters required 

for engineering cardiac tissues, where factors that 
can induce and promote the alignment/bundling 
of the cardiomyocytes need to be incorporated into 
the design of the artificial substrates [6, 7]. Beating 
of the cardiomyocytes poses another obstacle. While 
cardiomyocytes beat synchronously in the heart, such 
capacity is easily lost during in vitro manipulation due 
to the relatively harsh environment and mismatching 
matrix properties that cardiomyocytes experience 
when they are isolated, processed, and combined with 
the matrices. Methods based on electric stimulation 
and inclusion of electroconductive materials that 
improve the spontaneous and synchronous beating of 
engineered heart tissues also require optimization [8, 9].

On the other hand, drug-induced cardiotoxicity 
has become a great concern in the drug development 
process and clinically [10, 11]. In the past four decades 
approximately 20% of drug recalls arose from cardio-
toxicity, such as Fenphen, Micturin, and Seldane [12]. 
Recently, drug attrition rate in the drug development 
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Abstract
The heart is one of the most vital organs in the human body, which actively pumps the blood 
through the vascular network to supply nutrients to as well as to extract wastes from all other organs, 
maintaining the homeostasis of the biological system. Over the past few decades, tremendous efforts 
have been exerted in engineering functional cardiac tissues for heart regeneration via biomimetic 
approaches. More recently, progress has been made toward the transformation of knowledge 
obtained from cardiac tissue engineering to building physiologically relevant microfluidic human 
heart models (i.e. heart-on-chips) for applications in drug discovery. The advancement in stem 
cell technologies further provides the opportunity to create personalized in vitro models from cells 
derived from patients. Here, starting from heart biology, we review recent advances in engineering 
cardiac tissues and heart-on-a-chip platforms for their use in heart regeneration and cardiotoxic/
cardiotherapeutic drug screening, and then briefly conclude with characterization techniques and 
personalization potential of the cardiac models.
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process has further increased with a substantial por-
tion contributed by drug-induced cardiac toxicity. For 
instance, cardiac safety issues have accounted for half of 
the almost fifty drugs that have been retracted from the 
market since 1990s [13, 14]. This is mainly due to a lack 
of effective in vitro assays that accurately predict toxic-
ity in early stages of drug development. Current para-
digms for testing drug efficacy and toxicity are typically 
time-consuming, expensive, and yet often ineffective. 
Conventional two-dimensional (2D) static cultures of 
cardiomyocytes and animal models are the long-stand-
ing tools on which the field relies to study cardiotoxicity 
and cardiotherapeutic drug effects [15, 16]. While these 
over-simplified 2D models do not necessarily recapitu-
late their in vivo counterparts to provide accurate pre-
dictions, major disadvantages of animal models include 
their overall ineffectiveness to predict human response 
and associated ethical concerns that arose in the past 
decade [17]. Fortunately, experiences accumulated 
from cardiac tissue engineering have already enabled 
researchers to build biologically relevant miniature 
human hearts in vitro [18, 19]. The combination with 
advanced microfluidic technologies has further expe-
dited such a process by pushing forward the develop-
ment of the heart-on-a-chip platforms, which mimic 
the biology and the physiology of their cardiac coun-
terparts in vivo [20–22]. These realistic human heart 
models integrated with the microfluidic vasculature 
can be used to probe the systemic effects of drugs on 
the cardiac tissues and therefore better predict drug 
responses in the human body. 

In this review, we will start by describing human 
heart biology and physiology including the basic cellular/
matrix components, structures, and architecture. Then 
we will discuss methods to engineer functional cardiac 
tissues via biomimicry, followed by recent advances in 
the construction of microfluidic human heart-on-a-
chip systems and associated characterization techniques. 
Finally, we will briefly conclude with personalization 
approaches using stem cells technologies.

2. Breaking down the heart

Human cardiogenesis occurs in the lateral mesodermal 
layer during the early stages of embryonic development 
[23]. Endodermic modulation of adjacent tissue, to 
the later mesoderm, guides proper cardiovascular 
development [24, 25]. During such development of 
the four main chambers of the heart (two atria and two 
ventricles) and their associated features (valves and 
heart wall), specific cell populations are organized in the 
different parts of the heart (figure 1). The myocardium, 
primarily composed of cardiomyocytes, works as the 
main motor of the entire cardiovascular engine [26]. 
These cells arrange themselves in a parallel manner 
bonded by gap junctions and Fascia adherens unions, 
forming the myocardial fibers, which are responsible for 
the contraction. Aggregated myocardial fibers share a 
distinguished direction and particular thickness, which 

significantly enhance the contractile force exerted to 
pump the blood through the vascular system [27]. 

During the development process, atrial and ven-
tricular cardiomyocytes first form, followed by the cells 
of the mammalian cardiac conduction system [26], 
including pacemakers cells and Purkinje fibers, which 
have been phenotypically characterized as specialized 
cardiomyocytes [28]. These cells generate and conduct 
the electrical impulse from the left and right bundle 
branch to the myocardium of the ventricles. Nota-
bly, 50–60% of the entire cell population of the heart 
is comprised of cardiac fibroblasts that lay down the 
extracellular matrix (ECM) of the heart wall, with the 
rest of the population largely being cardiomyocytes that 
are responsible for the spontaneous contraction of the 
heart [26, 29]. 

While cardiomyocytes and cardiac fibroblasts 
occupy the majority of the cells in the heart, other types 
do exist and are located throughout the heart [30]. For 
example, the cell population on the endocardium as 
well as those lining the blood vessels and cardiac valves 
is mainly composed of endothelial cells. The pericar-
dium parietal wall is rich in epicardium cells, which are 
also located in the coronary vasculature. Neural crest 
cells contribute to parts of the outflow tract and the sep-
tum, enhancing tissue oxygenation [26, 29]. Immune 
response in the heart is balanced by macrophages, 
although they also play a role in the control of cell popu-
lation and maintenance of the ECM [31]. 

Although cell–cell interactions form the basis of 
the heart, autocrine and paracrine interactions have a 
major impact on the tissue responses through the secre-
tion of a combination of different factors that modulate 
the molecular composition of the tissue microenviron-
ment [32]. These factors include cytokines, growth fac-
tors, and ECM molecules that act either on the cells by 
which they are secreted or neighboring cells [32]. For 
example, bone morphogenetic protein (BMP), myocyte 
enhancer factor-2 (MEF2), and WNT-mediated signal-
ing together control specialization of cardiomyocytes 
[26, 30, 33]. Such an organized orchestra of cells and tis-
sue factors regulates, stabilizes, and reinforces the car-
diac phenotype. It is the concerted interactions between 
cells, ECM, and signaling molecules all together that 
contribute to the development and maintenance of the 
functions of the heart.

3. Engineering myocardium via 
biomimetic approaches

Tissue engineering seeks to regenerate damaged or 
diseased tissues/organs via the development and 
integration of biological substitutes [42]. While 
majority of the approaches rely on the use of artificial 
matrices, tissues have also been successfully fabricated 
without involvement of scaffolds [43]. 

With respect to cardiac tissue engineering, two 
main scaffold-free concepts have been adopted. The 
first concept focuses on the generation of sheets of 
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Figure 1. Schematics showing mature heart cell populations with geographical anatomy. Adapted by permission from Macmillan 
Publishers Ltd: [29] copyright 2013. 

Figure 2. (A) (i) Fabrication of multi-layered cardiac cell sheets. (ii) Fluorescence image on the right shows Troponin T staining of 
the cardiac muscle in a construct containing 6 layers of cardiac cell sheets. Green: Troponin T; blue, nuclei. Scale bar: 20 μm. Adapted 
with permission from [44] under a Creative Commons Attribution 3.0 Unported License and [93] copyright 2008, with permission 
from Elsevier. (B) Fabrication of PEG microwells and formation of EBs of uniform sizes. Cardiogenesis was maximized in EBs of 
450 μm in diameter. Adapted by permission from The Royal Society of Chemistry and[52]. (C) (i) Schematic diagram showing the 
fabrication of micropatterned hydrogels using a micromolding technique for cardiomyocytes alignment. (ii) Bright-field images of 
micropatterned MeTro with 20   ×   20 μm2 (width  ×  spacing) channels. (iii) Fluorescence images of aligned cardiomyocytes cultured on 
the micropatterned MeTro; scale bars: 200 μm. Adapted with permission from [73] copyright John Wiley and Sons. (D) (i) The biowire 
approach where a surgical suture was used to induce compaction and alignment of cardiomyocytes in the surrounding hydrogel. (ii), 
(iii) Cultured biowires under electrical stimulation improved the phenotype of cardiomyocytes. Adapted by permission from Macmillan 
Publishers Ltd: [74] copyright 2013. (E) (i) Preparation of scaffolds with suspended electrospun nanofibers. (ii) A superimposed confocal 
image of (iii)–(v) showing cardiomycytes on aligned nanofibers where the nanofibers were stained red, f-actin green, and nuclei blue. 
(vi) Image showing parallel alignment of sarcomeres, where nanofibers were stained bright pink and α-actin stained red. Scale bars: (ii) 
100 μm, (iii) 50 μm, (iv) 50 μm, (v) 100 μm and (vi) 10 μm. Adapted with permission from [75] copyright 2011, with permission from 
Elsevier. (F) (i) Scaffolds with an accordion-like honeycomb structure resulted in anisotropic mechanical properties possessed by the 
native myocardium. (ii) Fluorescence image showing alignment of cardiomyocytes cultured on an accordion-like honeycomb scaffold. 
Green indicates F-actin. Scale bars: (i) 1 mm, and (ii) 200 μm. Adapted by permission from Macmillan Publishers Ltd: [76] copyright 2008.
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 confluent cells which may then be either directly used 
or further stacked together into multi-layer structures, 
the so called cell-sheet engineering [44, 45] (figure 
2(A)). A cell sheet is obtained by first culturing cells on 
a substrate coated with temperature-sensitive polymers  
followed by the release of the confluent monolayer of 
cells at a lower temperature under which swollen mol-
ecules reduce the adhesion between the cells and the 
substrate [46]. Using such an approach, thick myo-
cardium-like tissues have been assembled. Interest-
ingly, vascularization through the myocardium layers 
was realized by sandwiching endothelial cell sheets in 
between two cardiomyocyte sheets [47]. The second 
concept of scaffold-free cardiac tissue engineering relies 
on the generation of multicellular aggregates termed 
spheroids. Figure 2(B) illustrates how uniform embry-
oid bodies (EBs, i.e. spheroids composed of embryonic 
stem cells) have been obtained by seeding the cells onto 
substrates containing microwells made of cell-repellent 
materials such as poly(ethylene glycol) (PEG) and poly-
dimethylsiloxane (PDMS) [48]. These EBs, whose sizes 
depend on both the seeding density and the dimension 
of the wells, are then able to differentiate into multiple 
cell types including cardiomyocytes, endothelial cells, 
osteoblasts, and neurons [49–51]. A following study fur-
ther showed that cardiogenesis was promoted for EBs 
with a diameter of 450 μm compared with other sizes, 
as identified by the higher expression of sarcomeric 
α-actinin and cardiomyogenic genes [52] (figure 2(B)). 
The use of EBs is particularly important in mimick-
ing cardiogenesis in vitro at early phases of embryonic 
development. Although the scaffold-free approaches 
have demonstrated their success to certain degrees, they 
barely provide directionality the native myocardium 
possesses, which is required for engineering cardiac tis-
sue surrogates to recapitulate their in vivo functionality. 

Scaffold-based approaches involve the creation of 
artificial matrices on which cardiomyocytes are grown. 
Polymers including those from both natural and syn-
thetic sources are used to fabricate the scaffolds. Com-
monly used natural polymers include elastin, collagen, 
gelatin, fibrin, hyaluronic acid and alginate [53, 54]. 
One of the greatest advantages of some of these natural 
materials is that they possess specific ligands (e.g. RGD) 
that allow for and promote cell adhesion [55]. However, 
the poorly defined chemical composition and batch-to-
batch variability have limited their applications in cer-
tain cases. In addition, their mechanical properties are 
not always sufficient to support many tissue types [56]. 
Some attempts have been made in order to overcome 
such mechanical deficiency. For example, static com-
pression of collagen gels has been adopted to increase 
the biomaterial densification and improve the mechani-
cal properties [57–60]. Acellular patches developed from 
compressed collagen have been grafted on infarcted 
myocardium, demonstrating to significantly improve 
the cardiac function [60]. Another approach to enhance 
the mechanical properties of natural polymers is to gen-
erate hybrid systems. For this purpose, Brigham et al 

have fabricated semi-interpenetrating networks of pho-
tocrosslinkable hyaluronic acid (MeHA) and collagen 
to achieve mechanical properties that far surpass those 
obtainable with collagen or MeHA alone [61]. Chemical 
modifications can also be considered in order to tune the 
mechanical strength of natural polymers. As an example, 
the varied modification degree of methacryloyl-substi-
tuted gelatin (GelMA) can be used to obtain scaffolds 
with desired mechanical properties that are suitable for 
various tissue engineering applications [62].

As an alternative to natural polymers, many syn-
thetic materials have been designed and developed, 
such as the biodegradable polycaprolactone (PCL), 
poly(lactic acid) (PLA), poly(glycolic acid) (PGA) 
and PLGA, the co-polymer of PLA and PGA [63–66]. 
Unlike natural polymers, the properties of these syn-
thetic materials can be easily tuned for different appli-
cations. For example, the degradation rate of PLGA, as 
determined by the ratio of the lactic acid to glycolic acid 
segments, the molecular weight and crystallinity, is any-
where between 1 month to years [67–70]. This tunable 
degradability allows the use of the scaffolds to initially 
populate the cells, but gradually degrade as the tissues 
develop, eventually leading to the generation of fully 
integrated functional tissues [71, 72].

With these natural and synthetic materials, research-
ers have devised a number of methods to induce and 
enhance the alignment of the engineered myocardium. 
Weiss et al combined methacryloyl-modified tropoelas-
tin (MeTro) hydrogels with microfabrication techniques 
to produce substrates with aligned ridges/grooves via 
photopatterning [73]. After seeding, neonatal rat cardio-
myocytes attached and aligned along the long axis of the 
micropatterns, evoking a cellular organization similar 
to the native myocardium (figure 2(C)). Alternatively, 
Radisic and co-workers recently proposed an innova-
tive biowire concept, where a surgical suture functioning 
as the directional guidance was surrounded by a PDMS 
channel filled with collagen type I encapsulating car-
diomyocytes derived from human induced pluripotent 
stem cells (iPSCs). The biowire structure was able to 
enhance cell alignment along the direction of the suture, 
whereas electrical stimulation further induced the mat-
uration of the myocardium (figure 2(D)) [74]. Similarly, 
the Orlova Group fabricated electrospun nanofiber 
scaffolds with an aligned topography for culture of 
cardiomyocytes. An enhancement in the alignment of 
the cardiomyocytes was observed when the distance 
between adjacent nanofibers was reduced (i.e. increased 
fiber density), showing nearly parallel distribution of α-
actin filaments in the cells and a faster propagation of 
the electrical stimulation wave along the direction of 
the fibers compared to the perpendicular direction (fig-
ure 2(E)) [75]. Moreover, the architecture of a porous 
scaffold can guide volumetric cell distribution in three 
dimensions (3D) into parallel-aligned blocks in order to 
mimic the bundled structure of cardiac tissues. Freed et 
al used poly(glycerol sebacate) (PGS) scaffolds assum-
ing an accordion-like honeycomb microstructure for 
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engineering cardiac tissues based on the observation 
that the myocardium is characterized by preferentially  
oriented muscle fibers surrounded by a honeycomb-
like network of collagen (figure 2(F)). The alignment 
of cardiomyocytes in the honeycomb scaffolds was 
significantly promoted as indicated by the orienta-
tion index approximately 37% higher than that of the 
control scaffolds with an isotropic structure. The engi-
neered myocardium also exhibited mechanical proper-
ties comparable to the ones of adult rat right ventricular 
myocardium [76].

Additionally, surface coatings have been employed 
in engineering cardiac tissues by providing a more in 
vivo like microenvironment. For instance, PGA scaf-
folds coated with laminin were found to increase cell 
size and induce a change in the electrical properties of a 
membrane populated with cardiomyocytes [77]. Other 
studies demonstrated that laminin improves the adhe-
sion and alignment of cardiomyocytes [78], whereas 
Grosberg and colleagues developed a brick wall pattern 
of fibronectin to promote the generation of anisotropi-
cally oriented cardiac muscle stripes [20]. 

Although promising results have been obtained by 
combining cardiomyocytes with polymeric scaffolds, 
current strategies relying on engineered scaffolds may 
still not be able to fully recapitulate the physiological 
cell–matrix interactions [79]. Accordingly, decellular-
ized xenogenic or allogenic ECM-based scaffolds have 
been devised to better mimic the natural microenvi-
ronment and provide accurate biophysical stimuli and 
signaling molecules [80]. The process is based on the 
removal of cellular content from the tissue or organ 
through extensive treatment with a surfactant or enzyme 
such as sodium dodecyl sulfate (SDS), Triton X-100, or 
trypsin [81–83], followed by repopulation with auto-
genic cells. The resulting construct is potentially non- 
immunogenic, yet the chemical and enzymatic degra-
dation process during decellularization must ensure 
complete elimination of the cellular material [84], with-
out disintegrating the ECM composition and integrity 
[83]. Considering the complexity of the cardiac tissue, 
a decellularized heart would be beneficial in preserving 
the integrity of its 3D anatomical structure and architec-
ture [82]. Ott et al reseeded decellularized rat hearts with 
rat cardiomyocytes and endothelial cells, enabling the 
recovery of the cardiac function and pumping capacity 
[81]. More recently, decellularized mouse hearts have 
been repopulated with human iPSCs-derived multipo-
tential cardiovascular progenitor cells, which exhibited 
spontaneous migration, proliferation, and differen-
tiation into cardiomyocytes, smooth muscle cells, and 
endothelial cells [85]. Successful as these examples were, 
controlling precise cell positioning during the repopu-
lation process that reproduces the heterogeneity of the 
native heart tissues and the attainment of an adequate 
mechanical force to pump blood are still challenges that 
remain to be addressed [79, 85, 86].

Interestingly, recent technological advancement on 
3D bioprinting has opened up an entirely new avenue 

to construct cardiac tissues due to the need to mimic 
their physiological counterparts with specific patterns 
in cell alignment, ECM distribution, and vasculature. 
This technique is based on a combination of rapid pro-
totyping and the use of bioinks to directly print cardiac 
tissues with well-defined architectures, cell types, bio-
molecules, and growth factors [87]. Although hydrogels 
are the most widely used materials for bioprinting [88, 
89], some researchers have recently exploited the pos-
sibility of using decellularized ECM as an ideal bioink 
to reproduce the natural microenvironment that cells 
experience in their native tissue [86, 90]. For example, 
the Cho Lab developed a decellularized ECM bioink 
that is liquid at temperatures below 15 °C to enable easy 
printing while gelation occurs at above 37 °C. Struc-
tures fabricated using the decellularized ECM bioink 
induced better differentiation of the embedded stem 
cells toward cardiac lineages, when compared with pure 
collagen and alginate bioinks [90].

In our opinion, bioprinting possesses a number of 
advantages for the fabrication of functional cardiac tis-
sues including precise control over the geometry of the 
constructs and spatial distribution of multiple types of 
cells, high reproducibility, as well as the possibility to 
generate customized geometries. Despite convenience, 
challenges still persist for this versatile technique, includ-
ing resolution and deposition speed [91]. High precision 
can be potentially achieved by reducing the diameter of 
the nozzles, but it is necessary to prevent cell death due 
to the high shear stress that cells might undergo dur-
ing the printing process [89]. Proper storage of the cells 
inside the bioink over the lengthy printing process poses 
another issue. The printing speed needs to be increased, 
likely by employing multiple nozzles for simultaneous 
printing of complex biological structures [92]. 

4. Simulating electrophysiology of the 
heart

During the development, maintenance, and 
regeneration of tissues, intercellular electrical 
mechanisms play a key role. This is particularly true 
for certain types of tissues including myocardium, 
skeletal muscles, and neurons that express strong 
electrophysiological behaviors in the body. Therefore, 
through the application of proper external electrical 
stimulation that simulates the in vivo signals, 
researchers have demonstrated better control over 
cellular adhesion, growth, maturation, and orientation, 
significantly enhancing the quality of engineered 
cardiac tissues (figure 3) [74, 94–96]. Electrical stimuli 
can be either monophasic or biphasic, in the form of 
sinusoidal or square waves, and delivered in pulses 
or continuously [97]. The most commonly used 
approaches for applying the electrical stimulation 
are based on the use of a pair of carbon or platinum 
electrodes that provides a uniform electric field in 
between. Although efficient, microscale precision 
with local stimulation cannot be achieved with these 
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simplified electrode pairs. A possible solution to 
overcome such limitation is given by the use of multi-
electrode arrays (MEAs). MEAs are fabricated by 
lithographic techniques, while circuitry for stimulation, 
recording and processing of the signals obtained 
can be integrated directly into their designs [98, 99]. 
MEAs permit single-cell resolution stimulation, that 
is, MEAs can generate electric fields over only two or 
few microelectrodes in the array instead of applying a 
field across the large area of a cardiac tissue. Recently, 
techniques for metal electrode deposition on glass 
substrates have been developed to further advance the 
fabrication of microelectrodes analogous to MEAs 
[100]. Nevertheless, these 2D electrodes are rather 
limited to their use in stimulating planar tissues.

In order to apply electrical stimulation to thick 
tissue constructs, several types of 3D electrodes have 
been microfabricated. For example, an interdigitated 
(IDE) array of platinum electrodes was recently devel-
oped to induce cell alignment that was shifted from 
the direction of the underlying GelMA micropatterns 
[101]. Besides the external stimulation, the electri-
cal properties of the scaffolds themselves are equally 
important. Comparing to the native myocardium, the 
polymeric scaffolds possess very limited electrical con-
ductivity as insulating materials. Lately, a few studies 
have sought to address these drawbacks by the inte-
gration of nanomaterials. For example, Khademhos-
seini et al demonstrated that the electrical activity of 
cardiomyocytes cultured on hybrid carbon nanotubes 
(CNTs)-GelMA hydrogels was significantly enhanced 
compared with those residing in pure GelMA hydro-
gels [102]. In a sense, the CNTs added into the hydro-
gels function as a conductive bridge among adjacent 
cardiomyocytes for relaying electrical signals. In addi-
tion, Kharaziha et al developed hybrid scaffolds com-
posed of PGS : gelatin (PG) electrospun nanofibers and 
CNTs. The composite nanofibers scaffolds resulted in 
greater alignment as well as enhanced synchronized 
beating compared to those cultured on PG scaffold 
without CNTs [103]. Similarly, gold nanostructures 
have been incorporated into 3D scaffolds to improve 
the electrical conductivity of the cellular network and 
to increase the electrical communication between 
neighboring cardiomyocytes. Dvir et al demonstrated 
that cardiac cells co-embedded with gold nanow-
ires within alginate scaffolds could better align and  
contract when compared with those grown in pure  

alginate. Moreover, the same group showed that electri-
cal stimulation increased the levels of proteins involved 
in muscle contraction [104]. In a recent work, coiled 
electrospun nanofibers integrating gold nanoparticles 
were fabricated. Cardiomyocytes cultured on these 
conductive nanofibrous matrices assumed organiza-
tion into aligned and elongated tissues generating low 
excitation threshold and high contraction rate [105].

5. Cardiac bioreactors and heart-on-a-chip

The recently developed organs-on-a-chip technology 
has integrated tissue models within a microfluidic 
platform simulating the circulation system that mimic 
both the biology and physiology of the human (multi)-
organ systems [115–131]. Using these organs-on-a-chip 
platforms, multiple organoids can be maintained under 
a well-defined microenvironment containing tightly 
controlled biochemical and biophysical cues to study 
inter-organoid interactions, perform drug screening, 
analyze developing, healthy, and diseased tissues, as well 
as to optimize treatments for personalized medicine 
[132, 133]. The construction of physiologically 
relevant organ models is the central theme in the 
organs-on-a-chip research. Technologies in tissue 
engineering have been adapted that allow for precise 
control of cell distribution, adhesion, morphology and 
behavior [134, 135] in the microfluidic devices through 
micropatterning [136], surface chemistry [137], and 
3D scaffolds with defined composition, structures and 
geometries [138]. Cyclic mechanical strain [139], shear 
stresses [140] and electrical stimulation [20, 141] may 
also be applied inside the microfluidic chambers to 
expose cells to cues mimicking those they experience 
under physiological conditions to promote in vitro 
tissue maturation. Moreover, hypoxia/normoxia 
conditions can be set up to mimic normal/pathological 
conditions [142] and study cell behaviors [142, 143]. 

Recently, significant advancement has been made 
in building heart-on-a-chip platforms with the devel-
opment of microscale tissue constructs that reproduce 
the structure and function of the myocardium. The 
Parker group has designed muscular thin films (MTFs) 
and subsequently employed them for pharmacologi-
cal and electrophysiological studies [144]. As exam-
ples, biohybrid tissue constructs made of anisotropi-
cally organized cardiomyocytes and elastomeric thin 
films were microfabricated (figure 4(A)) to measure  

Figure 3. Schematics illustrating methods of conducting electrical stimulation and enhancing the electrical properties of the 
matrices for cardiomyocytes.
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contractility (figure 4(B)), cytoskeletal organization, 
and action potential propagation, demonstrating that 
the sarcomere organization and cellular alignment 
influence the diastolic and systolic MTF stress peak [20]. 
The first version of such heart-on-a-chip platform was 
then modified to introduce controls over injection of 
drugs, embedded electrodes, a metallic base to maintain 
physiological temperature, and a transparent cover to 
visualize MTF deformations [22]. The same system was 
successfully applied to investigate genetic, structural, 
and functional aspects of the failing myocardium [38]. 
Radisic and co-workers developed a platform to per-
form pharmacological tests on cardiac bundles. They 
embedded a poly(tetrafluoroethylene) (PTFE) tubing 

within a bioreactor to provide contact guidance for  
cardiomyocytes to adhere and elongate. The platform 
was further integrated with electrodes for parallel or 
perpendicular stimulation of the cardiac bundles, 
inducing a mature phenotype of cultured cardiomy-
ocytes. The system was then tested with nitric oxide 
showing a decrease in the beating rate, demonstrating 
its capability to be employed for modeling in vitro car-
diac tissue development and disease [145]. 

An intriguing series of studies was carried out by 
the Kitamori group that developed biomicroactuators 
embedding beating cardiomyocytes to bend PDMS 
micropillars [146]. Later on, the same group designed 
a heart-on-a-chip pump, harnessing the cooperative 

Figure 4. Heart-on-a-chip models. (A) Schematics illustrating the fabrication process of contracting heart stripes. (B) Time-
lapse bright-field images showing contracting myocardium stripes. Scale bar: 5 mm. Adapted from [20] with permission of The 
Royal Society of Chemistry. (C) Schematic cross-sectional view of a heart-on-a-chip pump made of a PDMS elastomer hollow 
sphere covered with a sheet of pulsating cardiomyocytes. The contraction of the cell monolayer squeezes the sphere and pumps the 
fluid through the connected microchannel. (D) Displacement over time of a particle caused by the pulsation. The light gray and 
black plots indicate the movement of the particle before and after transplantation of the cardiomyocytes monolayer, respectively. 
Adapted from [147] with permission of The Royal Society of Chemistry. (E) Schematic showing the heart-in-a-channel model, 
where the inner surface of a microfluidic channel was coated with MeTro and seeded with a monolayer of beating cardiomyocytes. 
(F) Confocal images showing cardiomyocytes stained with troponin I (red) and nuclei (blue) in the left panel, and α-actinin 
(green), connexin-43 (red), and nuclei (blue) in the right panel. Scale bar: 50 μm. Adapted from [150] under a Creative Commons 
Attribution 3.0 Unported License, published by The Royal Society of Chemistry.
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contractile forces produced by synchronous pulsatile 
cardiomyocytes organized in a cell sheet to pump fluids 
through a microfluidic channel [147]. Rather than using 
a push-bar structure and a diaphragm to transmit the 
pulsatile contraction to the fluid, the same team devel-
oped a microspherical heart-like pump powered by a 
contracting cardiomyocytes sheet wrapped around the 
external surface (figures 4(C) and (D)). Significantly, 
despite simpler design compared to the previous pump, 
this system was able to move fluids within connected 
microcapillaries for up to 5 d. Moreover, the heart-like 

pump did not require an electrical interface and can be 
potentially embedded within medical implant devices 
requiring an internal actuator [147]. The Parker group 
designed another cardiac bioactuator that combined 
PDMS elastomer and cardiomyocytes to develop a 
‘medusoid’ construct mimicking the shape, kinemat-
ics and interaction with fluids of a jellyfish. Notewor-
thy, computational modeling was successfully coupled 
with experimental tests to dissect a complex system into 
basic components, which were subsequently optimized 
and connected with each other to mimic the natural 

Figure 5. (A) Experimental setup showing on-chip monitoring of cardiomyocytes beating using a webcam-based lensless 
microscope. (B) Relative beating rate of cardiomyocytes treated with doxorubicin (1, 5, 10, 100nM). (C) Representative pattern of 
the beating signal recorded from cardiomyocytes showing a clear increase in the beating frequency following isoprenaline (10 nM) 
treatment. (D) Relative beating rate of cardiomyocytes treated with doxorubicin (10, 100, 200 and 300 μM). (E) Representative 
pattern of the beating signal recorded from cardiomyocytes showing a clear decrease in the beating frequency following doxorubicin 
(100 μM) treatment. Adapted with permission from [106].
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behavior of a living organism based on simple materials 
and basic cell–material interactions [148]. 

Besides microfluidic heart-on-a-chip systems for 
pharmacological tests, other studies attempted to develop 
more physiologically relevant cardiac tissue constructs 
that recapitulate the cell–cell or cell/matrix interactions 
in vivo. In particular, the Simmons group developed a 
bi-layered microfluidic device embedded with valvular 
interstitial and endothelial cells [149]. Interstitial cells 
were cultured in a 3D GelMA hydrogel while endothelial 
cells were exposed to physiological shear stress. Although 
simplified, this model proved to be effective in demon-
strating that endothelial cells either alone or exposed to 
shear-reduced interstitial cell de-differentiation toward 
myofibroblasts. On the other hand, the Khademhosseini 
group focused on cell–matrix interactions to develop 
heart-in-a-channel platform (figures 4 (E) and (F)). Par-
ticularly, they found that MeTro coating of microfluidic 
channels significantly improved adhesion and sponta-
neous beating of cardiomyocytes compared to surface 
treatment by gelatin-based materials [150]. 

Meanwhile, it is of paramount importance to assess 
the functionality of the engineered cardiac constructs 
and heart-on-a-chip systems, including maturation, 
viability, and beating. Cardiomyocytes express an array 
of contractile proteins such as sarcomeric α-actinin, 
myosin, troponin I, troponin T and tropomyosin, as 
well as disease markers such as creatine kinase when 
the cardiomyocytes undergo damages [112, 113]. Most 
of these biomarkers can be easily detected through 
conventional approaches based on molecular biology, 
immunostaining, and enzyme-linked immunosorb-
ant assay (ELISA) by sampling the medium or the tis-
sues. Nevertheless, these methods are typically invasive, 
meaning that only end-point assays can be conducted 
for individual samples, greatly limiting the use of the 
heart models. Recent development in microfluidic tech-
nologies now allows for direct integration of biosensors 
for analyzing secreted biomarkers in situ or on-chip in 
a non-invasive and continuous manner [107–110]. For 
example, Wikswo and colleagues integrated automated 
pumping and fluid handling systems into their micro-
physiometry platform to conduct kinetic analysis of 
metabolites (e.g. lactate and glucose) secreted by the 
organoids as well as to monitor the physical environ-
ment (e.g. pH, oxygen) of the platform [111].

In order to specifically match the needs in moni-
toring the heart-on-chips, the Khademhosseini lab has 
developed a cost-effective, lensless miniature imager 
based on webcams that can be conveniently mounted 
at the bottom of the microfluidic chambers to follow 
the real-time beating behaviors of the cardiomyo-
cytes (figure 5(A)). The beating rate was successfully 
analyzed using custom-written programs, and it was 
shown that the rate dropped when isoproterenol was 
introduced into the system (figures 5(B) and (C)) 
whereas it increased upon treatment with doxorubicin 
(figures 5(D) and (E)), both in a dose-dependent man-
ner. Higher sensitivity of the mini-microscope can be 

achieved by utilizing webcams with a more advanced 
frame detection system and image processing [106]. 
Overall such a device has been demonstrated to possess 
much more flexibility compared with the conventional 
bench-top microscope. Multiple units can be easily 
integrated with an array of heart-on-a-chip platforms 
to achieve high-throughput drug screening.

6. Conclusions and perspective

Overall, significant advances have been made during the 
past few years in engineering functional cardiac tissues 
for heart regeneration. Several factors have been shown 
to play a key role in adhesion, growth, and alignment 
of cardiomyocytes, as well as in their phenotypical 
maturation and organization in complex cardiac tissues. 
Among them, structural properties of the scaffold, 
surface treatment, mechanical properties, and electrical 
stimulation represent critical elements. Moreover, the 
integration of these parameters with the co-culture 
of multiple cell types comprising of the heart appears 
fundamental to achieve functional cardiac tissues. 
Based on the knowledge obtained from cardiac tissue 
engineering together with advancements in microfluidic 
technologies, more physiologically relevant cardiac 
tissue models termed heart-on-a-chip platforms have 
been further developed recently. These heart-on-a-chip 
platforms are integrated with perfusable microfluidic 
networks simulating the vasculature, which not only 
provide nutrients but also actively contribute to the 
functional maturation of the cardiac tissues through 
the delivery of soluble biomolecules as well as the 
interactions among other organs. 

While most earlier studies have focused on animal-
derived cardiomyocytes due to their easy accessibility, 
the paradigm is now starting to shift toward the use of 
cardiomyocytes of human origin and particularly those 
derived from iPSCs [38]. The iPSCs hold strong poten-
tial in engineering heart-on-a-chip platforms as they 
are widely available and possess pluripotent capacity 
to differentiate into most cell lineages in the body (e.g. 
cardiomyocytes, hepatocytes, and endothelial cells) 
[39]. Clinically, individual variability among patients 
has greatly hindered the drug discovery process and 
reduced treatment efficacy. The fact that human iPSCs 
are derived in a patient-matched manner has made 
them a superb source to construct human heart mod-
els that can be used for personalized drug screening as 
well as for understanding patient-specific fundamen-
tals of diseases [40]. As we strive to achieve personal-
ized medicine it should be acknowledged that not every 
heart disease is the same, and a categorization of the 
diseases exists. For example, the number one heart dis-
ease in the United States is coronary heart disease [114]. 
In such a case the construction of a healthy heart model 
coupled with a defined diseased vascular microenviron-
ment seems more important over disease heart mod-
els. The congenital heart diseases such as ventricular-
septal defects and atrial-septal defects, are an opposite  

Biomed. Mater. 10 (2015) 034006



10

Y S Zhang et al

example where disease heart models are required to 
develop better treatments. The healthy and diseased 
heart models derived from human iPSCs, when com-
bined with advanced microfluidic technologies, would 
become highly valuable human heart-on-a-chip plat-
forms for personalized medicine and therapeutics.
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